MATH SOLVE

2 months ago

Q:
# A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour the population has increased to 270. (a) Find an expression for the number of bacteria after t hours. P(t) = (b) Find the number of bacteria after 4 hours. (Round your answer to the nearest whole number.) P(4) = bacteria (c) Find the rate of growth after 4 hours. (Round your answer to the nearest whole number.) P'(4) = bacteria per hour (d) When will the population reach 10,000? (Round your answer to one decimal place.) t = hr

Accepted Solution

A:

Answer: [tex]\bold{a)\ P(t)=P_o\cdot e^{t\cdot ln(2.7)}}[/tex] b) 5314 c) ln 2.7 d) 4.6 hrsStep-by-step explanation:[tex]P(t) = P_o\cdot e^{kt}\\\\\bullet \text{P(t) is the number of bacteria after t hours} \\\bullet P_o\text{ is the initial number of bacteria}\\\bullet \text{k is the rate of growth}\\\bullet \text{t is the time (in hours)}\\\\\\270=100\cdot e^{k(1)}\\2.7=e^k\\ln\ 2.7=\ln e^k\\\boxed{ln\ 2.7=k}\\\\\text{So the equation to find the number of bacteria is: }\boxed{P(t)=P_o\cdot e^{t\cdot ln(2.7)}}\\\\\\P(4)=100\cdot e^{4\cdot ln(2.7)}\\.\qquad =\boxed{5314}[/tex][tex]10,000=100\cdot e^{t\cdot ln(2.7)}\\100=e^{t\cdot ln(2.7)}\\ln\ 100=ln\ e^{t\cdot ln(2.7)}\\ln\ 100=t\cdot ln(2.7)\\\dfrac{ln\ 100}{ln\ 2.7}=t\\\\\boxed{4.6=t}[/tex]